Phylogenetic mixture model.
Usage
pmlMix(formula, fit, m = 2, omega = rep(1/m, m),
control = pml.control(epsilon = 1e-08, maxit = 20, trace = 1), ...)
Value
pmlMix
returns a list with elements
- logLik
log-likelihood of the fit
- omega
mixing weights.
- fits
fits for the final mixtures.
Details
The formula
object allows to specify which parameter get optimized.
The formula is generally of the form edge + bf + Q ~ rate + shape +
...{}
, on the left side are the parameters which get optimized over all
mixtures, on the right the parameter which are optimized specific to each
mixture. The parameters available are "nni", "bf", "Q", "inv",
"shape", "edge", "rate"
. Each parameters can be used only once in the
formula. "rate"
and "nni"
are only available for the right
side of the formula. On the other hand parameters for invariable sites are
only allowed on the left-hand side. The convergence of the algorithm is
very slow and is likely that the algorithm can get stuck in local optima.
Author
Klaus Schliep klaus.schliep@gmail.com
Examples
if (FALSE) { # \dontrun{
X <- allSitePattern(5)
tree <- read.tree(text = "((t1:0.3,t2:0.3):0.1,(t3:0.3,t4:0.3):0.1,t5:0.5);")
fit <- pml(tree,X, k=4)
weights <- 1000*exp(fit$siteLik)
attr(X, "weight") <- weights
fit1 <- update(fit, data=X, k=1)
fit2 <- update(fit, data=X)
(fitMixture <- pmlMix(edge~rate, fit1 , m=4))
(fit2 <- optim.pml(fit2, optGamma=TRUE))
data(Laurasiatherian)
dm <- dist.logDet(Laurasiatherian)
tree <- NJ(dm)
fit <- pml(tree, Laurasiatherian)
fit <- optim.pml(fit)
fit2 <- update(fit, k=4)
fit2 <- optim.pml(fit2, optGamma=TRUE)
fitMix <- pmlMix(edge ~ rate, fit, m=4)
fitMix
#
# simulation of mixture models
#
X <- allSitePattern(5)
tree1 <- read.tree(text = "((t1:0.1,t2:0.5):0.1,(t3:0.1,t4:0.5):0.1,t5:0.5);")
tree2 <- read.tree(text = "((t1:0.5,t2:0.1):0.1,(t3:0.5,t4:0.1):0.1,t5:0.5);")
tree1 <- unroot(tree1)
tree2 <- unroot(tree2)
fit1 <- pml(tree1,X)
fit2 <- pml(tree2,X)
weights <- 2000*exp(fit1$siteLik) + 1000*exp(fit2$siteLik)
attr(X, "weight") <- weights
fit1 <- pml(tree1, X)
fit2 <- optim.pml(fit1)
logLik(fit2)
AIC(fit2, k=log(3000))
fitMixEdge <- pmlMix( ~ edge, fit1, m=2)
logLik(fitMixEdge)
AIC(fitMixEdge, k=log(3000))
fit.p <- pmlPen(fitMixEdge, .25)
logLik(fit.p)
AIC(fit.p, k=log(3000))
} # }