Skip to contents

nnls.tree estimates the branch length using non-negative least squares given a tree and a distance matrix. designTree and designSplits compute design matrices for the estimation of edge length of (phylogenetic) trees using linear models. For larger trees a sparse design matrix can save a lot of memory. computes a contrast matrix if the method is "rooted".

Usage

designTree(tree, method = "unrooted", sparse = FALSE, tip.dates = NULL,
  calibration = NULL, ...)

nnls.tree(dm, tree, method = c("unrooted", "ultrametric", "tipdated"),
  rooted = NULL, trace = 1, weight = NULL, balanced = FALSE,
  tip.dates = NULL, calibration = NULL)

nnls.phylo(x, dm, method = "unrooted", trace = 0, ...)

nnls.splits(x, dm, trace = 0, eps = 1e-08)

nnls.networx(x, dm, eps = 1e-08)

designSplits(x, splits = "all", ...)

Arguments

tree

an object of class phylo

method

compute an "unrooted", "ultrametric" or "tipdated" tree.

sparse

return a sparse design matrix.

tip.dates

a named vector of sampling times associated to the tips of the tree.

calibration

a named vector of calibration times associated to nodes of the tree.

...

further arguments, passed to other methods.

dm

a distance matrix.

rooted

compute a "ultrametric" or "unrooted" tree (better use method).

trace

defines how much information is printed during optimization.

weight

vector of weights to be used in the fitting process. Weighted least squares is used with weights w, i.e., sum(w * e^2) is minimized.

balanced

use weights as in balanced fastME

x

number of taxa.

eps

minimum edge length (default s 1e-8).

splits

one of "all", "star".

Value

nnls.tree return a tree, i.e. an object of class phylo. designTree and designSplits a matrix, possibly sparse.

Author

Klaus Schliep klaus.schliep@gmail.com

Examples


example(NJ)
#> 
#> NJ> data(Laurasiatherian)
#> 
#> NJ> dm <- dist.ml(Laurasiatherian)
#> 
#> NJ> tree <- NJ(dm)
#> 
#> NJ> plot(tree)

dm <-  as.matrix(dm)
y <- dm[lower.tri(dm)]
X <- designTree(tree)
lm(y~X-1)
#> 
#> Call:
#> lm(formula = y ~ X - 1)
#> 
#> Coefficients:
#>   X89<->36    X89<->37    X77<->35    X77<->38    X73<->33    X73<->34  
#>  0.0499157   0.0491439   0.0724626   0.0755455   0.0712616   0.0725432  
#>   X65<->73    X65<->77    X51<->65    X51<->89    X75<->10    X75<->11  
#>  0.0034694   0.0099328   0.0029426   0.0432799   0.0885305   0.0820387  
#>   X62<->12    X62<->13    X86<->15    X86<->16    X67<->14    X67<->17  
#>  0.0461128   0.0479378   0.0134025   0.0151296   0.0467324   0.0580930  
#>   X63<->67    X63<->86    X59<->63    X59<->18    X88<->45    X88<->47  
#>  0.0035646   0.0360953   0.0032091   0.0775894   0.0034977   0.0063178  
#>   X80<->88    X80<->46    X74<->80    X74<->44    X72<->74    X72<->43  
#>  0.0231875   0.0381300   0.0154870   0.0421651   0.0015801   0.0392256  
#>   X85<->19    X85<->20    X79<->21    X79<->22    X71<->79    X71<->85  
#>  0.0088520   0.0092959   0.0229321   0.0224528   0.0145614   0.0299323  
#>   X81<->25    X81<->26    X87<->28    X87<->29    X82<->87    X82<->30  
#>  0.0274720   0.0286839   0.0148471   0.0117270   0.0181692   0.0364881  
#>   X70<->82    X70<->27    X68<->70    X68<->24    X66<->68    X66<->81  
#>  0.0219311   0.0563100   0.0033377   0.0569549   0.0008004   0.0221615  
#>   X61<->66    X61<->23    X60<->61    X60<->71    X58<->60    X58<->72  
#>  0.0021831   0.0502453   0.0042762   0.0102058   0.0020978   0.0117101  
#>   X57<->58    X57<->59    X56<->57    X56<->62    X53<->56    X53<->75  
#>  0.0013537   0.0043899   0.0011632   0.0063020   0.0070446   0.0117666  
#>   X84<->39    X84<->40    X78<->84    X78<->42    X52<->78    X52<->41  
#>  0.0696111   0.0583581   0.0144780   0.0701359   0.0225117   0.0792075  
#>   X50<->52    X50<->53    X49<->50    X49<->51     X92<->2     X92<->3  
#>  0.0008563   0.0018880   0.0036910   0.0033483   0.0324915   0.0274029  
#>   X91<->92     X91<->4    X90<->91     X90<->5    X83<->90     X83<->1  
#>  0.0090135   0.0362511   0.0024394   0.0505988   0.0425011   0.1170301  
#>   X69<->83     X69<->9     X64<->7     X64<->8    X55<->64     X55<->6  
#>  0.0289009   0.0967237   0.1091965   0.0693124   0.0029756   0.0874519  
#>   X54<->55    X54<->69    X76<->31    X76<->32    X48<->76    X48<->54  
#>  0.0027613   0.0065884   0.0534621   0.0681912   0.0151764   0.0010911  
#>   X48<->49  
#> -0.0018629  
#> 
# avoids negative edge weights
tree2 <- nnls.tree(dm, tree)